skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Yibo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Distributed key-value stores today require frequent key-value shard migration between nodes to react to dynamic workload changes for load balancing, data locality, and service elasticity. In this paper, we propose NetMigrate, a live migration approach for in-memory key-value stores based on programmable network data planes. NetMigrate migrates shards between nodes with zero service interruption and minimal performance impact. During migration, the switch data plane monitors the migration process in a fine-grained manner and directs client queries to the right server in real time, eliminating the overhead of pulling data between nodes. We implement a NetMigrate prototype on a testbed consisting of a programmable switch and several commodity servers running Redis and evaluate it under YCSB workloads. Our experiments demonstrate that NetMigrate improves the query throughput from 6.5% to 416% and maintains low access latency during migration, compared to the state-of-the-art migration approaches. 
    more » « less
    Free, publicly-accessible full text available February 27, 2025
  2. Programmable switches have been touted as an attractive alternative for deploying network functions (NFs) such as network address translators (NATs), load balancers, and firewalls. However, their limited memory capacity has been a major stumbling block that has stymied their adoption for supporting state-intensive NFs such as cloud-scale NATs and load balancers that maintain millions of flow-table entries. In this paper, we explore a new approach that leverages DRAM on servers available in typical NFV clusters. Our new system architecture, called TEA (Table Extension Architecture), provides a virtual table abstraction that allows NFs on programmable switches to look up large virtual tables built on external DRAM. Our approach enables switch ASICs to access external DRAM purely in the data plane without involving CPUs on servers. We address key design and implementation challenges in realizing this idea. We demonstrate its feasibility and practicality with our implementation on a Tofino-based programmable switch. Our evaluation shows that NFs built with TEA can look up table entries on external DRAM with low and predictable latency (1.8-2.2 μs) and the lookup throughput can be linearly scaled with additional servers (138 million lookups per seconds with 8 servers). 
    more » « less
  3. Immediately after the demonstration of the high-quality electronic properties in various two dimensional (2D) van der Waals (vdW) crystals fabricated with mechanical exfoliation, many methods have been reported to explore and control large scale fabrications. Comparing with recent advancements in fabricating 2D atomic layered crystals, large scale production of one dimensional (1D) nanowires with thickness approaching molecular or atomic level still remains stagnant. Here, we demonstrate the high yield production of a 1D vdW material, semiconducting Ta2Pd3Se8 nanowires, by means of liquid-phase exfoliation. The thinnest nanowire we have readily achieved is around 1 nm, corresponding to a bundle of one or two molecular ribbons. Transmission electron microscopy (TEM) and transport measurements reveal the as-fabricated Ta2Pd3Se8 nanowires exhibit unexpected high crystallinity and chemical stability. Our low-frequency Raman spectroscopy reveals clear evidence of the existing of weak inter-ribbon bindings. The fabricated nanowire transistors exhibit high switching performance and promising applications for photodetectors. 
    more » « less
  4. Abstract

    Optical devices are highly attractive for biosensing as they can not only enable quantitative measurements of analytes but also provide information on molecular structures. Unfortunately, typical refractive index-based optical sensors do not have sufficient sensitivity to probe the binding of low-molecular-weight analytes. Non-optical devices such as field-effect transistors can be more sensitive but do not offer some of the significant features of optical devices, particularly molecular fingerprinting. We present optical conductivity-based mid-infrared (mid-IR) biosensors that allow for sensitive and quantitative measurements of low-molecular-weight analytes as well as the enhancement of spectral fingerprints. The sensors employ a hybrid metasurface consisting of monolayer graphene and metallic nano-antennas and combine individual advantages of plasmonic, electronic and spectroscopic approaches. First, the hybrid metasurface sensors can optically detect target molecule-induced carrier doping to graphene, allowing highly sensitive detection of low-molecular-weight analytes despite their small sizes. Second, the resonance shifts caused by changes in graphene optical conductivity is a well-defined function of graphene carrier density, thereby allowing for quantification of the binding of molecules. Third, the sensor performance is highly stable and consistent thanks to its insensitivity to graphene carrier mobility degradation. Finally, the sensors can also act as substrates for surface-enhanced infrared spectroscopy. We demonstrated the measurement of monolayers of sub-nanometer-sized molecules or particles and affinity binding-based quantitative detection of glucose down to 200 pM (36 pg/mL). We also demonstrated enhanced fingerprinting of minute quantities of glucose and polymer molecules.

     
    more » « less
  5. A fully integrated graphene field‐effect transistor (GFET) nanosensor utilizing a novel high‐κ solid‐gating geometry for a practical biosensor with enhanced sensitivity is presented. Herein, an “in plane” gate supplying electrical field through a 30 nm HfO2dielectric layer is employed to eliminate the cumbrous external wire electrode in conventional liquid‐gate GFET nanosensors that undesirably limits the device potential in on‐site sensing applications. In addition to the advantage in the device integration degree, the transconductance level is found to be increased by about 50% over liquid‐gate GFET devices in aqueous‐media, thereby improves the sensitivity performance in sensor applications. As the first demonstration of biosensing applications, a small‐molecule antibiotic, kanamycin A, is detected by means of an aptameric competitive affinity principle. It is experimentally shown that the label‐free and specific quantification of kanamycin A with a concentration resolution at 11.5 × 10−9mis achievable through a single direct observation of the 200 s fast bioassay without any further noise canceling. These results demonstrate the utility and practicability of the new devices in label‐free biosensing as a novel analytical tool, and potentially hold great promise in other significant biomedical applications.

     
    more » « less